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DEDICATED TO WALEED AL-SALAAM

We study the polynomial H, ,(f, z) which interpolates an analytic function f and
its derivatives up to order r — 1 at the nth roots of unity. In particular we relate the
vanishing of the coefficients of the highest powers of z in the Hermite interpolant
H, ,(f, z) with the vanishing at certain points of the Hermite interpolants of certain

rn

functions related to .  © 1996 Academic Press, Inc.

1. INTRODUCTION

Several results of Walsh’s theory of equiconvergence [9] (see also [1,
61]) show the close behaviour of s,,_,(f, z), the Taylor polynomial of degree
n—1 of a function f, and the Lagrange interpolant to f on the zeros of
Z"—p", L, ,(f,z). For example, if f is analytic on |z| <1, ie., analytic
on |z|<l+4¢ for some &>0, then for any z {L,_,,(f,z)}7" and
{s,_1(f, z)} {° either both convergence or both diverge. Moreover, if f lies
in 4,, the class of functions analytic in |z|] <1 and continuous but not
analytic on |z| <1, then for any 0 < p <1, lim,_, (L, ,(f;z)—s,_:(f. 2))
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=0 for |z| <1/p>% However, in [4] Ivanov and Saff showed that while
{s,_1(f, 2)} " must diverge for fin A, and |z| > 1, it is possible for any
|z] > 1 to find a function f in A4, for which {L,_, ,(f,z)}{" is identically
zero. This result is a corollary of the following theorem.

THEOREM A. Let A be any subset of N and let me N. The following are
equivalent:

(a) There exists an fe A, such that the first m coefficients C(j, n),
j=n—1,.,n—mof L, _\(z,f) are zeros for every ne A.

(b) There exist distinct points w;, |w;|>1, j=1,2,..,m, and ge A,
such that L, (w,;,g)=0, j=1,..,m, for every ne A.

The corollary follows because they can construct a function f in 4, for
which the highest degree term of L, _, ((f, z) is zero for all n.

The close relationship between s, _,(f,z) and L,_, (f,z) led Ivanov
and Saff in the remaining part of [4] to study results for L,_, \(f, z)
similar to a theorem of Jentzsch [5] (see also [7, 8]) that if fis in A4, then
every point z with |z] =1 is a limit point of zeros of s,_(f, z). Writing
L, i (f,z)=X"2y C(j,n)z/ and defining

a(f,0):=lim  max  |C(j,n)|"",

n—-ow (1—0)n<j<n

they used a theorem of Grothmann [3] to show that for any f in 4,
a(f,})=1 and offered the conjecture that o(f,0)=1 for any 0<6<1.
Based on the truth of this conjecture, they proved an analogue of Jentzsch’s
theorem for the zeros of {L,_, (f;2)} ;.

In this paper we begin an extension of the above results to the Hermite
interpolant H, ,(f, z) of degree rn—1 which interpolates the function f" at
the zeros of (z” —1)". In Section 2 we study three differnt forms for express-
ing H, ,. One of these forms is in terms of the fundamental polynomials for
Hermite interpolation and in Section 3 we study these further, giving an
explicit form for these fundamental polynomials in terms of Stirling
numbers. Our main result is the following extension of Theorem A, which
was proved for r =2 by Goodman and Sharma [2]. Here ./, _; denotes the
class of functions f(z) which are analytic in |z] <1 and f“~Y(z) is
continuous in |z| < 1.

THEOREM 1. For any given positive integers m and r, there exist r
homogeneous polynomials Py, P, .., P,_,, each of degree 3(r —1) m(m—1)
and symmetric in m variables, such that for any n = mr, any f€ <f._,, and for
any m distinct nonzero points i, ..., ®,, such that P(w,, .., »,)#0
(v=0,1,..,r—1), the following two statements are equivalent:
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(a) The coefficients of the mr highest powers of z in the expansion of
the Hermite interpolant H, ,(f, z) are zero.

(b) For every v=0,1,..,r—1 the Hermite interpolant H, ,(g,,z) of
the function g[z):=f(z)[1/_,(z—wn")" vanishes at the m points
{w;n"} 7\, where i is a primitive rth root of unity.

This result is proved in Section 5 and depends on some properties of
H, , which are derived in Section 4. So far we have been unable to apply
th1s result as in [4]. If one could construct a function f'in .oZ _, for which
the r highest degree terms in H, ,(f, z) are zero for all n, then Theorem 1
would show that for almost all |z| > 1, there are functions g, in ./ _, for
which {H, ,(g,,zn")} -, is identically zero for v=0, 1, .., r — 1, where 7 is
a primitive rth root of unity.

2. ExprLiciT FORMS OF THE POLYNOMIALS H, ,(f, z)

Let r, neN be fixed and w=e*"". Let f(z)e</ , and let f(z)
> ya.z’. Denote by H, ,(f,z) the polynomial of degree rn—1 inter-
polating f at the zeros of (z"—1), i.e

H(f, o) =fP(w") for v=0,1,.,n—1; p=0,1,.,r—1. (2.1)

Thus H, ,(f, z) is the Lagrange interpolant in the roots of unity.
One can write H, ,(f, z) explicitly in three different forms which we now
discuss:

(a) In terms of f'"(w") and the fundamental polynomials,

r—1n—1

H, ,(fz2)=2 Y [(«") %, . (2), (2.2)
p=0v=0
where the fundamental polynomials %, (z)emn,,_, are determined
uniquely by the condition

LB @N)=5, x0, x  for R=0,1,..,r—1; N=0,1,.,n—1.

Rotating the argument z with w” (v=0, 1,..,n—1) around the origin,
one gets
%, (2) =", (v 'z), v=0,1,.,n—1; (2.3)

that is, one has to find only r polynomials %, =%, , in (2.2). Thus (2.2)
becomes

r—1n—1

H, ,(f2)=) X [P(e)o”ZL (o). (24)

p=0v=0
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When r=1,
1 z"—1

n z—1’

and when r =2,
L) =Pl —(n—=D(z=1)},  LAlz)=(z—1) P(z).

(b) In terms of [**)(w") and powers of z. Expanding (z) from (a)
in powers of z, one gets

rn—1

H, (/. Z A(jsr,m) 2 (2.6)

j=

where the coefficients A(j; r, n) depend only on j, r, n and the values of f
and its derivatives at the roots of unity. When r=1,

nfl

A(j;1,n)= Ztuﬂ” "),
while when r =2,

rn—1 1 n—1

5 Z co_j"f Z w(—/+1)f ) 0<j<n,
A(j; 2,m) = h=

n—1 n—1 .
n j Z 0 (") _}_7 Z - ;+1)f n<j<2n.

v=0

(¢c) In terms of (a,) and powers of z. Expanding f”)(z) in power
series, one gets a new form for the coefficients A(j;r, n) of (2.6), where
A(j; r,n) depends on a, in a very simple manner. Denote by p, .(z) the
fundamental polynomials of Lagrange interpolation at points 0, 1, ..., r —1;
ie.,

r—1

_ z—m pA2)
= = o 27

m#k

where p,(z)=[z], ,,[z],:=z(z—1)---(z—p+1). That is, we have

pk,r(m):5k,ma k,sz, 1,...,7’—1.

LemMmA 1. For any j=0,1,.,n—1; k=0,1, .., r—1, we have

A(.]+kn’ ran Z ]+\n (28)
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Proof. We first express f'”)(w") in terms of {a,,}. We have

f(p) z [Wl] Ay, z" Z Z []+Sn]/) /+mzl+sn—p

m=0 j=0s5=0
and hence
n—1
f(/))( Z CO V= Z []+Sn]pa]+\n’
Jj=0 s=0
p=0,1,.,r—1;, v=0,1,..,n—1. (2.9)

Now observe that

pk,r(o) :pk;(l): :pk,r(k_l):() (210)
Since { p,. ,(z)}} _{ are the fundamental polynomials of Lagrange interpolation
at0, 1, ..,r—1 and since [ x] , is a polynomial of degree p <r — 1, we have

r—1

[j+sn]p: Z [j+kn]ppk,r(s) (211)
k=0

for any j,s,neN and p=0,1,..,r—1.
Consider the polynomial H(z) of degree rn—1,

n—1r—1

Z Z Zj+kn Z pk r j+sn

j=0 k=0
Then for p=0,1,..,r—1;v=0,1, .., n—1,

n—1

H(P) Z CO‘(] ” Z []+k}’l] Z pki j+vn

n—1 r—1

z w =) Z aj+sn z []+k}’l] pk ;( )

n—1

z wV(l & z aj+sn[]+sn]p

=), (2.12)

where we have successively used (2.10), (2.11), and (2.9). Thus H(z)=
H, .(f, z) and (2.8) follows from (2.6).

In particular we see from Lemma 1 that when r=1,

Jal n Z a/+s}19 _1:03 15---9’1_13
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and when r =2, we have

(l_s)aj+sn9 O<j<nn

©
o

81 M8

A(j;2,n) =
(14+s)a;,y, n<j<2n

“
Il
)

3. Tue ExpriciT FORM OF %, (z)

We shall now find the explicit form of the fundamental polynomials

%, ,(z). It is known that the form of the polynomials %,(z) is given by
l rr—1—p
g;,(z)—( (2)) Y b, (z—1)P* (p=0,1,..r—1). (3.1)
/7' v=0 |

We first note that the coefficients b, , are independent of p. Define a
sequence of numbers {b } o° by the recurrence relation

bo=1, i UM, v (32)

where [ is given by (2.5).
We shall now prove the following.

LEMMA 2. The coefficients {b, .}

L_oin (3.1) (v=0,1,.,r—p—1) are
given by
b/),vzbv’ (33)

oo}

where the sequence {b.} is given by (3.2).

Proof. From (2.3) we see that for any integer p, 0 < p <r—1, we have

1=20(1)=b

.0

Forv=1,..,r—p—1, we see by using Leibniz rule that

175 /p+v
0= cf(er‘) ; Z <p,u > ) (rtv= m( ) u! b/h#*ﬂ

R et

o B (pv—p)!

_(p+)! (1’)”_”)(1)1)
B !

P-H—p

Mc

P
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hence, we get

v—1

=— Z p” =0 (1), v=1,.,r—p—1
n= 0

Thus the coefficients b, , satisfy relation (3.2) and this completes the
proof. |

So from (3.1), (2.5), (3.3), and (2.3) we have

. 1 Zn—l rr—1—p . i)
oz)=wl— [ ——— Y b(wz—1) (34)
Jj=0

pln"\w "z—1

forv=0,1,.,n—1; p=0,1,.,r—1.
We now give an explicit formula for the numbers b;.

LemMma 3. Let n,reN. For j=0,1,..,r—1, the coefficient b; in (3.4) is
given by
(r—j—1)! . ]
bj_ (r—1) z S()k[r J n,

where s, 1) are the Stirling numbers of the first and second kind,
respectively.

Proof. From Lemma 1 with j=n—1; k=r—1, we see that the coef-
ficients of z~'in H, ,(f, z) are

i <r_:>ain1. (3.5)

From (2.4), (2.3), and (3.1) the same coefficient is

n—1

U
nfr Z ﬁbrfl,/; Z CL)(,/)Jrl)vf‘(/))(a)v)' (36)
p=0 p v=0
The Taylor expansion of f gives
n—1

o } _1
Z WPV () = Z < " > P A, . (3.7)
v=0 =

Replacing (3.7) in (3.6) and equating (3.6) to (3.5), we get

“ = in—1\_ & (i—1
Z a/lnflnirﬂkl Z brl/}( p >= Z < >a/lnl' (38)

= — o \r—1
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Because (3.8) is true for any fe C" !, we obtain the system of equations for

b,’s,
rt in—1 A—1
Y b, < >=< > i=1.2,
pgo e p l"—l

which after multiplication by 4 can be rewritten as

r—1 " s
Y b,.lpn"(p+1)<pfl>=r<”> (3.9)
p=0

r

d An A
b, _,n7" < >=r< >, A=12,..
/)gl ! ’D p r

In order to solve (3.9), we recall the definition and simple properties of
Stirling numbers of the first and second kind (denoted here by s!"” and 7!
respectively):

or

< > = s"x, x"=3) l(’”)< )z' (3.10)

i=1 i=1
Stirling numbers satisfy the following relations:
s = —(m—1) s 45D s =(=1)"""(m—1)! (3.11)
s’ =1
S U S =10 =1. (3.12)

Using (3.10), we get

Zn W 3 t(’)< >p!

p=1

o (M =D i,
= p s p =,
El(,) S 2

(r P,

Therefore,
(P=D' & e
br*/’:(i’—l)' z SE‘ )ZL)I’Z > p=12.r,

Si=p

and the proof is complete.
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4. SOME PROPERTIES OF H, ,
In this section we shall investigate properties of H, , related to Theorem 1.
First, in relation to (a) of this theorem we shall find formulae for the
coefficients of the n highest powers of z in (2.6). We shall need the

following

LemMmA 4. For p=0,1,..,r—1, we have the representation

nr—r+p
ny(z_l)p lr(Z):(_l)ﬂ Z Ai//’)zv
v=0
nr—r+p
T (4.1)
v=0
where
A(v/))z(_l)/)Aizlr))frer*\’ (4.2)
and, in particular,
—p—1
Ag’p):<r+v P >, v=0,1,.,n—1. (4.3)
v

Proof. Since l(z)=(z"—1)/(z—1)-(1/n)=z"""1(z~"), it follows that

n(z—=1)7I(z)=nz(=1)? (z7 ' =1)P 2"~ "I'(z7 )

nr—r+p

. 1\
e Z ALI))(Z )‘
v=0

nr—r—+p

_ (p)onr—r+p—v

= Z Az .
v=0

Comparing the above with (4.1) gives (4.2).
From (4.1) for |z| <1, we obtain

n(z=1/I(z)=(=1) (1=z") (1—=z) """
=(—1)"(1—z") i <V—P+,Lt—1>zﬂ.
nw=0 ﬂ

If we compare the coefficients of z# (1 =0, 1, .., n—1) in the above and in
(4.1), we obtain (4.3).

Remark. The values of 4'7) for n <v<nr—r+ p—n can be determined
from the above, if necessary.



50 GOODMAN, IVANOV, AND SHARMA

LemmA 5. For positive integers r, n,

m—1

H,,(f.2)= % A2, (44)

where A(j)=A(j;r,n) and for j=1,2, ... n
r—1 r—p—1 ]_1
A X, b, ) , 45
i S X, () @

n—1 W) k
f 'CO ) wk( P +j).
k=0 P

Proof. From (2.2), (3.4), and Lemma 4 we have

X

pp+iT

n—1r—1

H, (f2)=3 X ["(0") Z,(2)

k=0p=0

n—1r—1 (p)
-y ¥

k=0p=0

n—1r—1 J r—p—1
f(/)( )1 /
=2 X pr Z b,w

k=0p=0 p'

p—1
Z b,(l(zo ")) (zeo = * 1) P Y kP

nr—r+p+v
% Z A;lp+v)an'—r+p+v—uw—k(nr—r+p+v—/z).

u=0
Putting j=7+ux — p —v in the two summations in v and yx, we obtain

n—1r—1 (/))( ) nr Jj—1

H, (fiz)=> Y Y Y A e+

r+p—p—j
k=0p=0 Jj=1 u=0
n—1 rflf(p)( nr r—p—1
o*) . .
e YL VR WA
k=0p—0 P- =1 I=r—p—j

on putting /=r+u — p—j and setting b,=0 for /<0.
Recalling (4.6) we get

nr r—1 r—p—1

H, ,(f.2)=n""} ”"’Z pper 2 bR (4T

j=1 l=r—p—j
Then (4.7) and (4.3) give the result.

Now in relation to (b) of Theorem 1, we take any complex number 7 and
consider

8(z) :==f(2)(z—1)"¢(2), (4.8)
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where ¢(z) is a polynomial of degree mr —r given by

Also set g, =0 for « <0 or o> mr—r.

THEOREM 2. For positive integers r, n,

Ho (o= —(—1r 3 Y (—l)ﬁfﬁ0ﬁ+;r<r;1>A("” i) (410)
j=1p=0

For the proof of Theorem 2 we shall need the following.

LemMmaA 6. If'r, p, B, are nonnegative integers such that 0 <p <r—1 and
r—j<p<r—1, then the following identity holds:

E s (e

_ p+r—1 }"—1 ]_1
=(=1) < p ><r_p_1>. (4.11)

Proof. Denoting the left side in (4.11) by P(r, p, 5, j) we see, after inter-
change of the order of summation, that

r—p—1 ﬂ‘l’]_l p+l r—p—1 r
o= 3 (PN S ()
i§0 L B p=1 p—i
r—p—1 ﬂ‘l’]_r p+l .rfpflf[ r
P S ()
i=0 l ﬁ k=0 k
Using the known identity
5 o) (1)
k=0 k m
(which can also be easily proved by indunction on m), we obtain
TN B\ (p+i r—1
reppi= S (PO e (07
i =0

; i p—1—i
(B+j—r) (r—1)!
(p+j—=r)(r=1=p)! p!

SACR
= i B+j—r—i)

M-~

—(=1y 7
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)

is the coefficient of x#*/~" in the product (14 x)""?~' (1 +x)?*/ 7", ie.,
(14 x)’~"', we see that

Since

P(rapaﬁaj):(_l)ripil

(B+j—n)! (r=1)! <j—1 )
(p+i—n r—p—DIPI\B+j—r

which reduces to the right side in (4.11). ||

Proof of Theorem 2. By the Leibniz formula, we have

g15= 3 (7)1 D2z or a2)

/=0

o\ i S (r=i)

From (2.2) and (3.4) we get

Tn_l rr—1n—1 COkr
H, (g T)=< > —S(p, k), (4.13
, /,Z::o kzz:o (r— wk) ’ )
where
k—1—p ket
S(pk)i= Y b‘,(TC:')w"kg("’(wk). (4.14)
v=0 :

From (4.12), we get
P p—1 _
g(ﬂ)(wk) _ /;0 <’;>f(1)(wk) igﬂ <p i l> (r:'l)' (wk_,[)rfiq(pflfi)(wk).
(4.15)

Combining (4.13), (4.14), and (4.15), we obtain

=1\
Hr,n(g? T):< n > Sla
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where

r—1n—1 kr r—1—p ( k)p+v

L Yty 2 b;>wkﬂiK?VmW”

- r! r—i p—I1—i
fé(f)Mde_” e

', and 3/, we derive

Interchanging the order of summation in >/~

r—1ln—1 r—1r—p—1p—1

_ Z Z ;kf(l) Z Z Z F(Lk, p,i), (4.16)

=0 k=0 p=1 v=0 i=0

where we have set

Nap (PP Emet
Fv(l,k,p,z).—bv<l>< ; >(r_l.)!( 1) )

Xq(/)flfi)(wk) w

—kv
:bv(71);‘7i(,r7w/()p+v7i w . <:> q(Pflfi)(a)k).
(4.17)

Putting p+/ for p in (4.16), we obtain

r—1n—1 g() kxr—I1—1r—I1—p—1
=y ey Y

1=0 k=0 I p=0 y=0

r—v r—i prv—i+l r q(/)ii)(wk)
G v

i=0

r—1n—1 g£(1) r—Il—1r—I1—p—1
S R

=0 k=0 ! p=0

X Z wk(rfv)(_l)rfpri (T_wk)v+i+l<

d > q(i)(,f”k). (4.18)
p—I i!

Recalling the value of ¢(z) from (4.9), we see that

)\ +l+lq(l)( )
il

mr—r I+v+i .
o . I+v+i )
=gV <.>O_“Zocz Z < >T/+v+lﬁ(_1)ﬁ2/)’
a—0 \1 B—0 p
mr—r I+v+i

<O(> z <l+v+l> ,L./+v+i7/)’(_l)ﬂZﬂJrochrfvfi'

I(z):=z"""(t—z

B
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Putting y=f +a+r—v—i and interchanging the order of summation,
we have

mr+1 y+i+v—r l . ‘
](Z Z z7 Z <Ol(> o-a< +v+1 y>(_1);r+1+varrl+a+r3:'

0 r I+a+r—

Using the above expression for I(z) in (4.18) with z replaced by w* we get

rflnflf(l c rm+ 1 r—Il—1r—I1—p—1
=2 X I D )
I1=0k=0 ' y=0 p=0 v=0
ro\THETT (e I+v+i
_ 1y tv—a—pl—y+atr
X,-go<p—i> P <i>a“<l+a+r—y>( b ! '

Since i<p and v<r—p—I—1, it follows that /+v+i<I+v+p<
r—1<r, so that for y </, we have /—y+oa+r>=r>[+v+i Thus we have
(, [+ )=0for y<I.

Recalling (4.6), we see on setting f:=/—y+ o+ r that

r—1 rm+1 r—Il—1r—p—I1—1
5=y Y ox,y Yy bz< > (vpoly),  (419)
1=0y=1I+1 p=0 v=0

where we have set

, LY (Bt y —1—r\[I+v+i
TG,v,p,Ly)i= ) (ﬁ yl. >< 5

B —p+l+r—p
)o,m,,.r/(—l)‘ privrs,
p=0

Putting j=y— I, we have

) ) I+i+v _’_-7}, 1+V+l
TG, v, p,Lj)= ) <ﬁ { >< 5

B=0
We shall change the order of summation successively in the expression
for S, in (4.19). Thus

A 0 g O B

i=0 =0 p=0 i=0

) — 47—
)am_,-rr’f(—l)‘ pris,

Then we see that

r—p—I1—11+p+v r—1r—Il—p—1

X X =2 X

v=0 p=0 p=0v=p—1—p

N ﬁ+f_r><l+v+i> 5
= . i 0_ -7’.T
/fgo vg() (P - l>< I B B+
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because ('**") vanishes for v < f—/—p. Also,
p—1 r—Il—1r—Il—v—1

¥ -2y

v=0

i _

Combining all the above changes of order of summations, we finally
arrive at the following value for S, after replacing y by j+/ and after inter-
changing the first two summations in (4.19). Thus,

rm r—1

)Y 2 (=) Xy, Z -

j=11=0
r—I1—1
x Y (=1)"b,Sy(v+1 B, (4.20)
where
et r B+ji—r\/p+i
e ,,Zo pIA <p—i>< i ><ﬂ >
—1\/ j—1
=(—1)”*"‘<rﬂ ><r1p1>, (4.21)
by Lemma 6.

To sum up we have shown that

H, (g 7)= <T”n 1>,. s, (4.22)

where by (4.20) and (4.21),

rm r—1 r—I1—1 7'71 71
==2 X X, Z Vidlay, ;o X bv< Ji >< ’ >
v=0

=150 r—I—v—1

rm r—1 r—I1—1 _1
--3 'y <—1>ﬂrﬁoﬁ+,-r( VL 3 ()

Jj=1p=0

m r—1 r—1

—= % % ety (7 waim =)

j=18=0

by (4.5). Combining this with (4.22) then gives (4.10) and completes the
proof.
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5. PROOF OF THEOREM 1

From (4.10) we see immediately that (a) implies (b). It remains to prove
that (b) implies (a). Condition (b) asserts that if # is a primitive rth root
of unity then the r functions g,(z), v=0, 1, .., r— 1, given by
(5.1)

,':|§

qv I(Z w/’7

k=1
ki

have the property that H, ,(g,, z) vanish for z=w;5" (i=1, 2, .., m). Now
g, has the form (4.8) with 7 =w,5", where ¢(z) in (4.9) is replaced by

qv l Z Joc iZ 1 - (52)
where o, ; are symmetric functions in the variables {®,, N o}
By (4.10), we have
Hr,n(gvr CU,-T?V)
rm r—1 r—1
= —(oin™ — Z Z w?’?‘ﬁaﬁ+jr,i< B >
j=1=0

X A(nr—j)y"F+i=n

R N r—1
=—(0in™ =1 Y, n VAmr—j) ) (—l)ﬁwfaﬁ+j_,“,»< )

J=1 B=0

rm—r r—1 1
=Y 6, Y (—1)ﬁw5”<r > r=1-p
a=0 =0 ﬁ

" . r—1
= Z z/ Z (_l)ﬁwlﬁ< ﬁ >ajr+|+/)’,i' (54)
Comparing (5.3) and (5.4), we see that
rm—1

H, (g, on")=—n"(win"=1)" Y n~"A(m—j—1)c;,,

j=0
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where ¢, ; are given by the generating function

m _ r rm—1
10 NGl I S (5.5)
j=0

Z—W;

i

Thus to show that (b)=>(a) is equivalent to showing that the system of
equations

Y. Ve,  A(rn—j—1)=0, i=1,..m; v=01.,r—1, (56)

is nonsingular.
If we multiply the system (6.7) by #"* and sum with respect to v from 0
to r— 1, we obtain r homogeneous systems of equations of m variables:

m—1

Y ChyjiAlnr—2Ar—j—1)=0, i=1,..,m, (5.7)
izo

for every j=0,1,..,r—1.
Let us denote the determinant of the system (5.7) by 4, :=

4, (@, s o,)=det(c, ;)i\, "=y. The coefficients ¢;, are homog-
eneous polynomials in @, ..., ®,, of degree rm — 1 —j. In particular,
. o (@1 @)
Crm_1i=1 Vi, co,i=(—1)" N
. —o,
and
Ci1,i—W;C ;= (=1~ Srmfja
where
m rm
n (Z_wl)r: Z Srmszj'
=1 j=0

So 4, ,(wy, ..., ®,) is a polynomial in w,, .., w,,, homogeneous of degree
m—1 r

Y (rm—l—)Lr—j)zgm(m—l—l)—m(jﬁ—l). (5.8)

A=0

In order to prove that the system (5.7) is nonsingular, we shall need the

following.

LEMMA 7. For m=1,2,.. and for j=0,1, .., r — 1, we have

4, 0, o,)=(0,0,) "] (0,—-o,) P; (0, ..,), (5.9)

r<s
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m 1 a homogeneous polynomial of degree 5(r—1)m(m—1) in
Wy, oy @, such that

where P,

r—1
P_/,l(w1)=(—1)rl"< . >
J
and for m=2,3, ...,

) r—1
Pf,m(wla"'a wm130):(_1)rm+mJ(wl-"wm1)r+1< ] >
X Py (0 0y ). (5.10)

Proof. 1t follows from (5.5) that (5.9) holds for m=1. If we differen-
tiable both sides of (5.5) k times (k <r— 1) with respect to w; and then put
w,;=0, we get

rm—1 k m
(D7 e=D!
J - - - @ 7 —
j;o z [D wi j 1]@,—0 (r—l—k) n z wl
lsél

Comparing powers of z on both sides, we see that

0, j=0,1, ., r—2—k,

—1 -1z
=<} PR
Vi

Similarly, if we differentiate (5.5) with respect to w, ([#1i) and then put
w,=0, we see exactly as above that

[ D* 0, j=0,1,.r—1—k (5.12)

] }j i ]w/:O =
So ¢; ; is divisible by (T}, w,)" "'~/ for every i=1, .., m. Thus every ele-
ment of the first column of 4, ,(w,, ..., ®,,) is d1V1s1ble by (ITm, ) '
If w,=w, for some r+#s, then Eq. (5.7) is identical for i=r and s and so
a4; Vanlshes Thus 4, ,, is divisible by ], ., (w,—®,) and this proves
(5.9).

For the degree of P, ,,, we see from (5.9) and (5.8) that

deg(Pj,m)zdegAj,m_m(r_ 1 _J)_%m(m_ I)Z%(r_l)m(m_ 1)
From (5.11) and (5.12) with i=m, k=r—1—j, we get

r—1—j _ rflfj(r'il)!m_1 r
[Da)m Aj,m(wla"'a wm)](x)m=0_(_1) j' 1_[ (_wl) Am,]a
: =1

(5.13)
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where 4, , is the co-factor of the last element of the first column of
[4;,]1,, -0, 1€,

Ay =(=1)""det(er i, =0) 7o 750
=(=1)"""4,,, (0, .o, ) (5.14)
We obtain the last equality from (5.5) as follows (i #m):
1 m—1 1 m

[l z—w) =z"" [T GEz=w) a0

i j=1 i]=1

zZ—w Z—w

rm—1

= Z Cj,i |wm:02j7r
j=0

rm—1)—1
= Z c
Jj=0

J
r+j, i |mm:0 z7.

On the other hand, differentiating (5.9) r— 1 —j times gives

m—1

r—j
D:u:,l_jAj,m |m,”=0:(r7 1 7])' < n CO/> 1_[ (CU,.*CU_\.)

=1 r<s
r#m

XP; (0, .0, 1,0). (5.15)

Finally, comparing (5.13) and (5.14) with (5.15) gives (5.10). |

COROLLARY 1. For m=1,2,3,... and j=0,1,..,r—1 the polynomials
and P, ,, do not vanish identically.

J,m Jjom

A
Proof. The result follows by induction on m by utilizing Lemma 7. |

In order to finish the proof of the theorem, we identify the polynomials
P; from the condition of the theorem by P, ,,. Then Corollary 1 says that
condition

Pj(wl7~--9 wm)ioa JZO’ l’---ar_17

is fulfilled for almost all (w, ..., ®,,) and then (5.9) asserts that system (5.7)
is nonsingular for our w,, ..., ®,,. |

Finally we give the polynomials P, ,, for simple cases. When r =1 we see
from Lemma 7 that P, ,,=(—1) /" For r=2, it was shown in [2] that
4; ,,, and hence P, ,,, is divisible by [, _, (®, + w,). Then Lemma 7 shows
that

Pﬁm(w] > vy wm) = ( —1 )jm+(]/2) mim ) 1_[ (CU,. + ws)'

r<s
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For r > 2, we have not derived any general formula for P; ,,. For r =3,
m=2, a direct calculation shows that

Py oy, 0y) =Py 5wy, 0,) =07 + 40,0, + 03,

P (o, w,) =407 +Tw,0, +4w3.
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